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STABILITY ANALYSIS OF STRUCTURES BY A REDUCED
SYSTEM OF GENERALIZED COORDINATES

STANLEY B. DONG and JosepH A. WOLF, JRr.

Mechanics Department, University of California, Los Angeles

Abstract—A method of analysis using a reduced system of generalized coordinates for the static linear bifurcation
theory of stability is presented. Finite elements (displacement models) are used to idealize the structure. The
advantage of the present method is a large reduction in the size of the eigenvalue problem to be solved without
sacrificing the capability of using a large number of degrees of freedom for mathematical modeling. The efficiency
and accuracy are illustrated by numerical examples for various types of planar structures. Although only examples
using one-dimensional type elements are offered, this procedure is obviously equally applicable for other structures
such as plates and shells.

1. INTRODUCTION

THE foundations of the linear theory of static stability of structures are well established.
Formulation of the governing equations by equilibrium methods results in an eigenvalue
problem whose solution consists of a denumerable set of eigenvalues and a corresponding
set of eigenfunctions. These are related to the critical loads and stable equilibrium con-
figurations. Of course, only the lowest eigenvalue is of practical interest. Alternatively,
energy methods have been employed. In this case, an approximate value of the critical
load is obtained with the use of one or more assumed coordinate functions. Monographs
such as Timoshenko and Gere [1], Bleich [2] and Ziegler [3] give illustrations of these
principles to various structures.

Recently, finite element methods (displacement models) have been proposed for the
solution to stability problems; see, for example, Hartz [4], Kapur and Hartz [5], Navaratna
et al. [6] and Anderson et al. [7]. In this method, a discrete number of coordinates is chosen
as the primary variables for the formulation of the problem. A system of algebraic equations
of the form

[KHU}+A[K]{U} =0 (1)

is obtained, where [K] is the stiffness, [K;] the geometrical stiffness or initial stress matrix
and {U} an ordered set of nodal point displacements. The coefficient A is related to the
critical load configuration. Methods of solution to equation (1) fail into two general
categories : iteration and direct solution (Jacobi, Householder, etc.). In-the former, a value
for A is assumed and the vanishing of the determinant of {{K]+ A[K¢]} is checked. This
procedure is repeated until the correct value is found. In the direct method, a solution of
the form

{U} = [9]{X} 2
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is sought with the properties
o) [Kelld] = 1] (3
[¢1' K1) = —[4a): ()

The modal columns in [¢] represent the eigenvectors and { X } are the “normal” coordinates
of the system.

For the solution to the stability of complex structures and structural systems, an
accurate mathematical model is necessary, requiring an extensive number of nodal points.
This will result in matrices [K] and [K] of considerable size. Consequently, for a large
number of coordinates, the computational effort by the direct method becomes inordinately
large. In this paper, a method is proposed which transforms the generalized coordinates of
the original system to a reduced system of generalized coordinates. Then, the direct
solution of the problem is effected in the reduced generalized coordinates. By this method,
the capability of using a large number of nodes to model the structure is retained and the
advantage of solving an eigenvalue problem of very limited size is achieved. This method
1s akin to the Rayleigh-Ritz procedure. Examples are given to illustrate the accuracy,
versatility and efficiency of the method. Although only examples of one-dimensional
members are offered, this procedure obviously is equally applicable for other structurcs
such as plates and shells.

2. PROBLEM STATEMENT

Consider a planar structure with arbitrary geometry and variable linear elastic proper-
ties as shown in Fig. 1, which is acted upon by a system of forces F,, F,, .. ., F,,.. .. F,. Let
a parameter A be introduced as a multiplier of every load F,. This parameter has the
significance of the ratio of a critical loading configuration to the present loading con-
figuration. We are primarily concerned with determining the least value of 4, which is
associated with the loading configuration at the inception of instability when the structure
will assume an alternate planar equilibrium position that is stable.

Stability analysis by the finite element method requires that the structure be sub-
divided into a system of elements which are connected at a discrete number of nodes.
Each element is assumed to have prismatic properties: I, A, I, E which are, respectively,

FiG. 1. Elastic structure and external loads.
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its length, cross-sectional area, moment of inertia with respect to an axis normal to the
plane and modulus of elasticity. The bases of the method are matrix expressions for the
stiffness and geometrical stiffness, which are relationships between the nodal point forces
and displacements of an element. The stiffness is a function of the mechanical and geo-
metrical properties of the element, whereas the geometrical stiffness depends primarily on
the axial force P;, which results as the structure is deformed from its natural state by the
system of loads F;. These relationships are known and we will adopt the forms used by
Martin [8], who has traced the history of their development. The element force—deformation
relationship in the deformed state is

(3 = [t +1k ] (03 g

where { f;} and {§;} are force and displacement vectors referred to a global coordinate
system, see Fig. 2.

{‘f:}}’r = {sz Y;Jﬁ Mba Xf’ }}7 Mf} (63‘)

{5j}T = {uy, Uy, By, Up, Up, Bj‘} (6b)

Elements of the stiffness [k;] and geometrical stiffness [k,;] matrices are:

128 +puc®  —(12—pse  —6s8 —125*—pe? (12—psc  —6sl
Q2 +ps*  6cl (12—wse  —12¢*—ps? 6el
El 412 6sl —6¢l 2P
(k)] = 7 s (7
128+ pue* —(12—p)sc  6sl
Symmetric 12¢* +pus? —6cl
L 4 |
365 —36sc —3sl 3687 s —3sl |
36¢? 3¢ 36sc —~36¢? 3cl
5 P 3 ~3d P
(ke = 5 . (8)
301 Symmetric 36s? —36sc¢ 3sl
36¢? —3cl
i 47 |

where P, is the axial force (considered positive for tension) and « is the inclination of the
member with the x-axis, see Fig. 2. The remaining notation used in equations (7) and (8)
is defined as:

p= AP/, ¢ =cosu,s = sinao 9

¥n the al?sence of initial stress (the natural state), note that the force-deformation relation
is that given by equation (5) with [kl = 0.
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PROPERTIES OF MEMBER : A,I,E AND p:Af%/I

NODE b

Yb Vb

FiG. 2. Element geometry.

Specific steps in stability analysis are as follows:
(1) The element stiffness relationships [k;] are evaluated and combined in accordance
with equilibrium and displacement compatibility requirements at each node to yield :

[K){U} = A{F} (10)

where A{F} is the external load vector, [K] is the stiffness of the assembled elements and
{U} is the ordered set of nodal displacements. The solution to equation (10) furnishes an
equilibrium configuration described by {U}, which will be called state (e). From {U}, the
element axial forces P; can be computed.

(2) To investigate the stability of state (¢), let an admissible neighboring equilibrium (p)
be introduced, which is described by a displacement field { U*} measured relative to equilib-
rium state (e). In order to ascertain the existence of a nontrivial {U*}, the stiffness [K] is
reconstructed and [K;] is assembled from the element geometrical stiffnesses [k, ], using
P;, the known element axial forces. The second variation of the potential energy of internal
forces 362, which is denoted by Q, between states (e) and (p) is given by:

0 = U™ |[K]+ (K]

Trefftz’s criterion [9] states that for Q to possess a nontrivial minimum, where its character
changes from positive definite to positive semidefinite and signifies that the buckling load
has been reached, the variational equation

o0 =0 (12)
must be satisfied. Equation (12) yields a system of linear algebraic equations for a set of
nontrivial displacements.

(U*). (1)

[[K]H[KG]] (U*} = 0. (13)

The solution to this eigenvalue problem gives the magnitudes of 4;, which are the ratios
of critical loading configurations to the loading configuration described by {F}.
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3. ANALYSIS BY GENERALIZED COORDINATES

In order to retain the capability of using a large number of degrees of freedom to model
a structure and at the same time achieve the advantage of solving an eigenvalue problem
of limited size, the following procedure is suggested. Consider the following displacement
transformation from the generalized coordinates to a reduced system of generalized co-
ordinates:

{U*} = [¥]{h} (14)

where {h} is a reduced generalized displacement vector of smaller size. The columns of
[¥] represent a set of independent displacement configurations satisfying geometric
continuity and geometric boundary conditions. These column vectors must be capable of
giving a relatively complete description (in a mathematical sense) of the buckled con-
figurations and can be found by the solution of

[K][Y] = [H] (15)

where each column of [H] represents an independent static load pattern. The load patterns
must be chosen such that the solution of equation (15) for [¥] approximates the primary
buckled configurations. A direct solution for [¥] may be found at the same time as the
solution for {U} of state (e) [step (1) of the previous section].

The second variation of the strain energy, given by equation (11) and expressed in
terms of generalized coordinates {h}, takes the form

0 = 4" [[K1+AIK)| th) (16)

where
[K] = [¥Y"IK][¥) (17
[Rel = (¥ITK L) (18)

The sizes of [K] and [Kg] resulting from computations (17) and (18) are much smaller
than their corresponding original counterparts. Applying Trefftz’s criterion to equation
(16) yields

[[I?]Jr/l[KG]] (hy =0 (19)
which represents the eigenvalue problem to be solved. The solution to equation (19) is
{h} = lo1{X} (20)

where {X} is a set of “normal coordinates” and [¢'] are eigenvectors possessing the pro-
perties:

(91" [K1le] = U] 21
[0 T [K) @] = ~[4] (22)

where 4, are the eigenvalues of the problem. As the basis [¢'] spans a smaller generalized
space, the matrix product

(4] = [¥](e] (23)

represents a subset of eigenvectors of the structure in the physical coordinates associated
with the eigenvalues A,. These eigenvectors correspond to the lowest eigenvatues of the
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system, but this can only be true if the lowest eigenvectors can be found from [¥]. Ior
example, Shubinski et al. [10] have shown for vibration problems that [¢] are the lowest
eigenvectors provided they could be extracted from the reduced set of generalized co-
ordinates.

4. EXAMPLES

The following examples are offered to illustrate the accuracy and efficiency of the present
method. A computer code prepared in FORTRAN 1V for an IBM 360/75 model was
employed for the analysis. Examples were divided into two general categories. In the
first group, an attempt was made to check the accuracy of the present method. Static
stability analyses of columns and frames were performed. For such simple geometrical
configurations, no added advantage is derived in using the present method. These examples
are offered only to develop confidence in the method. In the second group, consideration
is given to examples in which many degrees of freedom are needed to properly model the
geometrical configuration. The merit of the present method will evince itself in these
examples.

The type of problems analyzed in the first group together with the number of elements
chosen to represent each type of structure are summarized in Table 1. Section properties
A4 and EI are constant throughout the structural system in all examples except for the
stepped column. Also summarized there are the end conditions and loading functions
used to generate the reduced system of generalized coordinates. A description of pertinent
details for each example follows :

(i) Uniform column. Critical loads were calculated for a prismatic bar with four sets
of end conditions. Complete results are given in Table 2. Note that for the hinged-hinged
case, the independent loading functions chosen are proportional to the exact buckled
shapes. Thus, all ten critical loads are in excellent agreement with theory. For other end
conditions, the independent loads are not proportional to the buckled shapes. Nevertheless,
very good agreement is obtained for all but the highest critical loads.

(ii) Stepped cantilever column. The lowest computed critical load was 1-0557E1/L? and
the theoretical value given in [1, p. 115] was 1.055EI/L?.

(ili) Two bar frame. For a frame with a hinged column and a fixed beam, the lowest
computed critical load was 14-66EI/L?, and for a fixed-fixed frame, the lowest computed
critical load was 28-40EI/L2. Theoretical values presented in [1, p. 65] were 14-66EI/L°
and 28-38E1/L?, respectively.

(iv) Bent. The bent analyzed was composed of three prismatic bars of equal length.
Critical loads and buckled shapes were calculated for three sets of end conditions. The
computed results are shown in Fig. 3 for the lowest symmetric and the lowest antisymmetric
buckling loads for each set of end conditions. The results are in excellent agreement.

Hartz [4] also analyzed the bent by the direct solution of the equations of a finiic
element formulation, where he modeled the hinged-hinged case and fixed—fixed case as
problems with three and two generalized coordinates, respectively. Using the present
method with an equal number of generalized loads in each case, approximately the same
results were obtained. No added advantage is realized in using the present method for
simple geometries, as indicated previously.

The usefulness and practicality of the proposed method can be shown by the following
examples.
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TaBLE |. PROBLEM DESCRIPTIONS

Number  Number o )
Structure of of degrees Types of buckling loads Description of independent loads
elements of freedom

P 138 e 1P

v —_
Column 20 63 I AI‘ l 1 Transverse loads on column
i  @n—-Tx
= §in — =
te n 2L

for fixed-free end conditions, and

‘P
Stepped 20 63 061,02 €1 q, = sin X
column 0.4 LLEI " L

for all other cases, with

n=1,2,...,10 and

i’ 1
T x, the running distance along
Two bar 23 L
frame 40 1 1 thecolumn

b L~ b L~
P {P 4P [ L el Transverse loads on columns
! in" n=12...,5
Bent 60 183 1 4, = SN o n=12...,
e ol el 5 symmetric and 5 antisymmetric cases

Normal pressure loads

wifye q
Shallow 40 123 ‘.‘ /4 3  nnd
arch qp = S ——
2a

20
n=12,...,10

(v) Shallow arch. Buckling loads and buckled shapes were calculated for a uniformly
loaded shallow circular arch using three sets of end conditions. The results are shown in
Fig. 4 for three ratios of AR?/I. Theoretical results used in the comparison were obtained
considering the arch as inextensible. For values of extensional rigidity which are large in
comparison with flexural rigidity, the computed values are in excellent agreement. It is
interesting to note that for the present case the arch buckles in a symmetric shape when
the ratio AR?/I decreases.

(vi) Deep arch. Buckling load parameters for a deep arch with fixed supports on both
ends were calculated and compared with the analytical solution of Wempner and Kesti[11].
The independent loads used are the same as those given for the shallow arch in Table 1.
The case under comparison is that which Wempner and Kesti called constant direction
theory. In addition, the direct solution of the eigenvalue problem using four elements was
made. This problem as posed contained nine degrees of freedom. Therefore, only nine
generalized loads were used in the present method in order to afford a valid comparison.
The results are presented in Table 3. It can be seen that the present method yields much
more accurate results than the four element model.



HINGED ~HINGED FiXED~HINGED

FIXED-FIXED

COMPUTED m=1.82i5
THEORETICAL m =182

COMPUTED m= 4.428|

COMPUTED m= 7.3913
THEORETICAL m= 738

ui

COMPUTED m= 15054

COMPUTED m=i2895
THEORETICAL m= 1289

FiG. 3. Buckling loads and buckled shapes for bents, P, =

5

COMPUTED m= 25183
THEORETICAL m=2517

(theoretical values trom {2] pp. 233 254).
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aR?/1=10°

AR? /1210°

AR? /1=2x10%

HINGED-HINGED FIXED-HINGED

COMPUTED m=32393 COMPUTED
THEQRETICAL m= 323

COMPUTED  m=350.01 COMPUTED

COMPUTED m= 39320 COMPUTED

FiG. 4. Buckling loads and buckled shapes for shallow circular arches (x

m= 483.27

m=54308

m= 62108

= 10°), ¢.,

"R

FIXED-FIXED

COMPUTED m=664.07
THEORETICAL m= 6635

COMPUTED m= 98522

COMPUTED m=1514.9

(theorctical values from (1] pp. 297 -301).
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TasLe 2. COEFFICIENTS & FOR BUCKLING OF UNIFORM COLUMNS P, = RQIZ‘?{
Hinged-hinged Fixed-hinged Fixed-fixed Fixed-free
Mode N = ) X

M T ROV s TR g o Theen g DR Then g
i 10000 f ~0 20458 20457 ~0 40001 4 ~0 0-25002 028 001
2 40001 4 ~0 6-0470 60469 ~0 81837 81828 001 22518 225 008
3 90006 9 001 12:049 12:047 0-02 16-006 16 0-04 62633 625 021
4 16004 16 003 20-057 20:047 0-05 24-206 24188 0-07 12:307 1225 047
5 25015 25 0-06 30-083 30047 012 36.090 36 025 20-395 20-25 072
6 36047 36 013 42154 42047 025 48373 48188 0-38 30-653 30:25 1-33
7 49-126 49 0-26 56-333 56-047 0-51 64-738 64 115 42:954 4225 167
8 64-300 64 0-47 72:767 72:047 1-00 81-384 80-189 1-49 58-103 56-25 329
9 81.653 81 0-81 91.908 90047 207 113-34 100 133 74-871 7225 363

10 101-32 100 1.32 125.97 11005 14:5 13594 120-19 131 11144 90.25 23.5

AI0M Y O pue oNod g S

-
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mEI AR? ;
TABLE 3. COEFFICIENTS m FOR BUCKLING OF FIXED CIRCULAR ARCHES ¢, = RY WITH ~—— = 10
Arch Theoretical 98 Element Four element
angle results solution with nine direct
20 [11, p. 848] generalized loads solution
60 ~74.9% 74-96 7805
120 19-4 19-59 21-36
180 9-0 9-003 10-60

1 See [14].

(vii) Multistory frame. The single bay frame analyzed was composed of from three to
fifteen stories, each of height L and bay width L. Equal section properties were assumed
for all columns and girders in the frame. Independent loads consisted of transverse forces
on the columns of the frame, and included five symmetric loads g = sin nnx/H, and five
antisymmetric loads g, = sin(2n— 1)nx/2H, where H is the total height of the frame.
Results for the lowest buckling load are given in Table 4. They are in excellent agreement
with exact values which were computed using a direct eigenvalue solution. The efficiency of
the present method can be seen by comparing the respective computation times. The
direct solution for a 15 story frame took approximately fifteen times longer than the present
method.

mEIl AlL? "
TABLE 4. COEFFICIENTS m FOR BUCKLING OF MULTISTORY FRAMES P, = Tz WITH = = 10
P P
re L »} Number of Present Direct
stories results eigenvalue
L n solution
L 3 4.546 4.542
. L= 5 4.127 4-124
n 10 3.786 3775
L Equal
stories 15 3-505 3.487
J L
7

5. CONCLUDING REMARKS

It can be seen from the examples that the present method is an effective and practical
means of predicting critical loads. The method is related to the Rayleigh-Ritz procedure
and the present results are upper bounds to the exact solutions. It has been shown that the
accuracy of the upper bounds for the lowest eigenvalue can be improved with an increased
number of admissible coordinate functions (see Chen [12], for example). If the accuracy of
the present solution needs to be verified, then the Vianello or Stodola method can be
applied, using the present results as a point of departure. As demonstrated by the examples,
the accuracy of the present results is of sufficient quality that if iteration is necessary, only
a minimal number of cycles should suffice for convergence. The use of a static load pattern
in an eigenvalue problem can be traced back to Morley [13]. The present method can there-
fore be considered as an extension of this concept for more than one generalized coordinate.
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AbeTpakT—/laeTcs METOA aHanu3a [UTA CTATUHECKOH Teopun OHdYpKauMu, UCRONbIYS COKPAKEHHYIO
cucTemy 0BOGILIEHHBIX KOOPAMHAT. [/t HACANNIALMU KOHCTPYKLHMH HCTOJb3YIOTCH KOHEUHBIE 1IEMEHTD
mozenu nepemeulenuit/. [1peumylIecTBOM TPeansAraeMoro Mertosa seiaseTcs 60bLIOE CoKpalleHie
pa3Mepa 3anaui Ha COBCTBEHHBIC 3HAYEHUSA, KOTOPYIO MOXKHO Onpene/uTh 603 0Tka3biBanus crnocobHocTu
UCITONB30BaHUsA GONBLIOCO YHCIA CTENeHEH CBO6O bl AUt MaTeMATUYECKOH MoaeH. C NOMOLLBIO YHCTIEHHbIX
NPUMEPOB HAMIOCTPUPYIOTCA SOPEKTHBHOCTL U TOMHOCTL METOAA JUIS PA3HBIX THIOB KOHCTPYKLMH.
Hecmorpsi Ha 910, uTo B HacTosuweil paboTe AaroTCs TONBKO MPUMEPHI, KACAIOUIHMECA OOHOMEPHBIX 31¢-
MEHTOB, [POLECC, OYEBUAHO, MOXHO MPUMETHTL IS YNPYIUX KOHCTPYKUMA, TAKUX KAK [UIACTUHKY M
060m04KH.



